Application of Higher Order Statistics Techniques to EMG Signals to Characterize the Motor Unit Action Potential

Shahjahan Shahid, Jacqueline Walker, Gerard M. Lyons, Ciaran A. Byrne, Anand Nene

Abstract — The electromyographic (EMG) signal provides information about the performance of muscles and nerves. At any instant, the shape of the muscle signal, motor unit action potential, is constant unless there is movement of the position of the electrode or biochemical changes in the muscle due to changes in contraction level. The rate of neuron pulses, whose exact times of occurrence are random in nature, is related to the time duration and force of a muscle contraction.

The EMG signal can be modelled as the output signal of a filtered impulse process where the neuron firing pulses are assumed to be the input of a system whose transfer function is the motor unit action potential. Representing the neuron pulses as a point process with random times of occurrence, the higher order statistics based system reconstruction algorithm can be applied to the EMG signal to characterize the motor unit action potential.

In this paper, we report results from applying a cepstrum of a bispectrum based system reconstruction algorithm to real wired EMG (wEMG) and surface-EMG (sEMG) signals to estimate the appearance of MUAPs in the Rectus Femoris and Vastus Lateralis muscles while the muscles are at rest and in six other contraction positions. It is observed that the appearance of MUAPs estimated from any EMG (wEMG or sEMG) signal clearly shows evidence of motor unit recruitment and crosstalk, if any, due to activity in neighboring muscles. It is also found that the shape of MUAPs remains the same on loading.

Index Terms — Electromyographic signals, Motor unit action potential, Higher order statistics theory, HOS based blind de-convolution.

I. INTRODUCTION

Electromyographic (EMG) signals, detected directly from the muscle or from the skin surface by using indwelling or surface electrodes respectively, show a train of motor unit action potentials (MUAPs) plus noise. An MUAP is the sum of a group of muscle fiber action potentials (MFAP), where each MFAP is the superimposed information of the muscle and neuron firing signals [1], [2]. To maintain or increase a force level, the motor unit (alpha motoneuron) fires (excites each muscle fiber) repeatedly and, consequently, the muscle contracts. The firing pulses are normally considered a random function of time which is non-Gaussian in nature [3]. A simple model of an EMG signal is [1] - [3]:

\[x(n) = \sum_{r=0}^{N-1} h(r)e(n-r) + w(n) \] (1)

where \(x(n) \) is the modelled EMG signal, \(e(n) \) is a point process, whose times of occurrence have a random characteristic, that represents the firing impulses, \(h(r) \) represents the MUAP, \(w(n) \) is a zero mean additive white Gaussian noise which is independent of \(e(n) \) that represents the system noise and \(N \) is the number of motor unit firings.

There are many factors which can affect the appearance of the MUAP, including the type of electrodes, e.g. whether they are invasive or noninvasive and the filtering properties of the electrode [1]. The shape and the amplitude of the MUAP may also depend on the characteristics of the muscle fibers and the distance between the muscle fiber and the recording site [1]. The amplitude of the MUAP in the EMG signal is related to a certain extent to the force a muscle may generate and thus to the level of contraction [1], [4]. The shape of the MUAP within the motor unit action potential train (MUAPT) is constant unless there is movement of the position of the electrode from where the EMG signal is recorded, or biochemical changes in the muscle occur [1]. The frequency of occurrence of the MUAP in the EMG signal also changes at different levels of muscle contraction [5].

To characterize the EMG signal, investigators have used a variety of signal processing techniques. Due to the difficulty of extracting individual MUAPs from the EMG signal, particularly the sEMG signal, many investigators have relied on the use of the overall signal. The amplitude of the EMG signal, estimated as either the mean absolute value (MAV) or root mean square (RMS) of its time-varying standard deviation, may be recovered by de-correlating the signal (following appropriate noise rejection filtering), then demodulating and smoothing it [6]. Parameters such as the RMS value have been extensively used to assess the relationship between the EMG amplitude and the force of the contraction [4], [7], [8], [13]. The integrated EMG signal may also be used: for example, a linear relationship between the amplitude of the raw integrated wired EMG signal and the force level in the Vastus Lateralis (VL) muscle during linear ramp isometric knee extension was found by [9]. A linear correlation was also observed in the...
average integrated EMG signals recorded from any place in the VL muscle. Evidence of crosstalk in the sEMG signal of the Rectus Femoris (RF) muscle due to the contraction of the Vastus Lateralis (VL) muscle was found by an ensemble averaging technique applied to both the surface EMG (sEMG) and wired EMG (wEMG) signals [10], [11].

A number of techniques have been developed to assess EMG signals (both wEMG and sEMG) in the frequency domain. The spectrum of the EMG signal is mainly composed of energy in frequencies ranging between 50 to 70 Hz [12]. The frequency spectrum may change due to physiological processes, such as fatigue [13]. The change in the frequency spectrum of the fatigued muscle EMG signal is a reduction in the power in the higher frequencies which suggests that a different type of MUAP may be generated due to the physiological processes in the muscle. A similar behavior of frequency shifting and power reduction at high frequency was observed in the sEMG signal [12]. Higher order statistics were used by [3] to analyze the sEMG signal. It was reported that the sEMG becomes less Gaussian on increasing mean voluntary contraction (MVC).

Some researchers have worked on establishing the shape of the MUAP in the EMG signal. A low-pass differentiator was described in [13] for estimating MUAPs from the EMG signal. A concentric needle electrode was used to record the EMG signal and the MUAP parameters of duration and number of baseline crossing pulses were visually assessed and measured from the recorded signal by [14]. However, it is very difficult to determine MUAPs when a great number of motor units fire simultaneously. MUAPs were extracted from the wEMG signal by searching and matching with a pattern (template) of MUAPs that had previously been observed [15], [16].

A template-based approach can work in signals from weakly contracting muscle as distinct MUAPs can be distinguished more clearly during weak contractions when only a few motor units are active. But with strong contractions, the MUAPs become so numerous that the EMG signal becomes noise-like in appearance [15]. In these circumstances, a signal processing technique may be applied to extract the MUAPs. As a first step towards this goal a weighted low pass differential filter was proposed by [17] to locate MUAPs in the sEMG by estimating their peaks in the sEMG signal. A Wiener filter based sEMG signal decomposition was proposed by [18]. The proposed method theoretically can estimate the intramuscular EMG signal, i.e. the MUAP when the firing pulses are assumed to be a Gaussian process. A combination of power spectrum and higher order spectral techniques was used by [19] to decompose the MUAP. Results were reported based on simulated EMG signals. Higher order statistics were also used by [20], [21] for decomposition of MUAPs. Satisfactory results were only obtainable for wEMG signals [20] and for reproduction of synthetic EMG signals [21].

In this paper we consider an EMG signal to be modelled by a linear time invariant (LTI) moving average (MA) system (as in (I)) with the input to the system generated by firing neuron pulses whose random times of occurrence are non-Gaussian in nature. We use a higher order statistics (HOS) based system reconstruction algorithm to estimate the typical shape of the MUAP from an EMG signal; allowing the behavior of the motor unit action potential (MUAP) to be characterized. We report on an initial assessment of the performance of the technique for estimating the appearance of the MUAP from the EMG signal. EMG signals collected from four different subjects under a variety of contraction positions and loading conditions were considered, giving the opportunity to observe the estimated MUAP shape when the muscle contraction position and/or loading changes.

This paper is organized as follows: a brief introduction to HOS and a system reconstruction technique that is based on HOS are presented in Section II. In Section III the protocol for recording the EMG signals used for MUAP estimation is described. MUAP estimation and representation techniques are discussed in Section IV. A discussion and analysis of the shape of the MUAP in different EMG signals is reported in Section V. Finally, conclusions are presented in Section VI.

II. HOS THEORY FOR EMG SIGNAL ANALYSIS

Frequency domain techniques are amongst the most fundamental and useful tools in the area of signal processing. Conventional techniques are generally based on the analysis of the first and second order moments and cumulants (i.e. mean, correlation and variance) and their spectral representation (e.g. power spectrum). These techniques provide all the information available from the signal only if the underlying process is Gaussian and is operated on by a linear system. For non-Gaussian processes and nonlinear systems, more information can be obtained from the higher order moments and cumulants (3rd order to Nth order) and their spectral representation (higher order spectra). The second order spectrum suppresses phase relationships, whereas information about the phase of the underlying system is available from higher order spectra [22]. Among other properties of the higher order spectra, two important ones are relevant here: (a) the higher order spectra of the sum of two or more independent sets of random processes is equal to the sum of the spectra of those random processes of the same order; and (b) the higher order spectra (≥2) of a Gaussian signal are theoretically equal to zero.

Higher order statistics are useful in blind deconvolution and system recovery. As they do not suppress phase information, they may be applied to non-minimum phase and nonlinear systems. As they are able to recover information about nonGaussian signals, they are useful in systems involving non-Gaussian input signals as in the MUAPT model. In this paper we will use the 2nd order spectrum, the Bispectrum, to estimate the system information. The bispectrum is the most accessible of the higher order spectra as it is the simplest to compute (computational complexity increases with increasing order) and its properties have been well explored [22] - [28]. The following sections show how the bispectrum may be computed from the available system output signal (x(n) in (I)) and how, assuming the model for the MUAPT described by (I), the bispectrum may be used to recover the system transfer function which describes the MUAP.
A. Bispectrum

The bispectrum is the expectation of three frequencies: two direct frequency components and the conjugate frequency of the sum of those two frequencies of a random signal [22]. Knowing the Fourier frequency components, \(X(k)\), of the output signal \(x(n)\), the bispectrum, \(B_x(k,l)\), can be estimated using the Fourier-Stieltjes representation [22]:

\[
B_x(k,l) = E\{X(k)X(l)X^*(k+l)\}
\]

where \(E\{\bullet\}\) denotes the statistical expectation, \(k, l\) are the discrete frequency indices and * denotes the complex conjugate. The bispectrum is complex and, therefore, it has magnitude and phase. If the output signal comes from an LTI system with a non-Gaussian white noise input signal as in (1), it can be written as [22], [23]:

\[
B_x(k,l) = \gamma e^{3}H(k)H(l)H^*(k+l)
\]

where \(\gamma e^{3}\) is the skewness that is equal to the bispectrum of the input signal \(e(n)\) and \(H(k)\) is the transfer function of the system \(h(r)\). As the Gaussian white noise is independent of the input signal and since, theoretically, the bispectrum of Gaussian white noise is zero, there is no effect from the system noise when estimating the bispectrum of the output [22], [23]. The magnitude of a typical bispectral estimate from one second of EMG signal (details of EMG signal acquisition are given in Section III) is shown in Figure 1(a).

B. Cepstrum of Bispectrum System Recovery Technique

The cepstrum of bispectrum, \(c_B(k,m)\), can be found by applying a 1-D inverse Fourier transform operation to the bispectrum:

\[
c_B(k,m) = \mathcal{F}^{-1}\{B_x(k,l)\}
\]

where \(\mathcal{F}^{-1}\{\bullet\}\) denotes the inverse Fourier transform.
logarithm of the bispectrum (a 2-D frequency domain signal) [24], [25]
\[c_{B_x}(k, m) = F^{-1}[\log B_x(k, l)] \]
(4)

where \(F^{-1}[\bullet] \) denotes the 1-D inverse Fourier transform to be applied on the frequency axis \(l \) and \(m \) is the time-like index. The cepstrum of the bispectrum produces a representation of amplitude vs. time vs. frequency. The cepstrum of bispectrum of any system output signal can be used to estimate the system \(b(r) \) from the system output signal \(x(n) \). By expressing the bispectrum of a system output signal in terms of the system transfer function as in (3), (4) can be manipulated to [25]:

\[
c_{B_x}(k, m) = F^{-1}[\log \gamma_z^0] + F^{-1}[\log H(k)]\tilde{l} + F^{-1}[\log H(l)]\tilde{l} + F^{-1}[\log H_x(k + l)]\tilde{l} = [\log \gamma_z^0]d(m) + [\log H(k)]d(m) + [\log H(l)]d(m) + p_x(m)
\]
(5)

where \(F^{-1}[\bullet] \) denotes the 1-D inverse Fourier transform which is applied on the frequency axis \(l \), \(P_z \) is the power spectrum, \(p_x(m) = F^{-1}[\log P_z(l)] \) is the power cepstrum and \(\delta(\bullet) \) denotes the Kronecker delta function. The cepstrum of bispectrum derived from one second of EMG signal is shown in Figure 1(b). Considering only the axis \(m = 0 \), (5) can be expressed as:

\[
c_{B_x}(k, 0) = [\log \gamma_z^0] + [\log H(k)] + \phi_x
\]
(6)

where \(C = [\log \gamma_z^0] + \phi_x \) is a constant. Thus, (6) consists of the log of the system transfer function plus a constant. The constant can be removed by normalization, since for any blind deconvolution procedure we can only recover the system to within a scale factor [23]. Letting \(k = 0 \), (6) and \(H(0) = 1 \) gives \(C = c_{B_x}(0, 0) \). Thus, the system transfer function can be computed as:

\[
H(k) = \exp[c_{B_x}(k, 0) - c_{B_x}(0, 0)]
\]
(7)

The estimated \(H(k) \) in (7) may not always be accurate as the estimated phase of the system \(\phi_x \) (i.e. \(\angle H(k) \)) may vary from the true phase \(\phi \) due to the fact that the true bispectrum phase (biphase) may differ by integer multiples of \(2\pi \) from the estimated bispectrum. Therefore, it is necessary to include a phase unwrapping technique [27]. To perform phase unwrapping, we need to fit the integer values relating the true and estimated biphase as below [28]:

\[
\Psi_t(k, l) = \Psi_x(k, l) + 2\pi n(k, l)
\]
(8)

where \(\Psi_t(k, l) \) and \(\Psi_x(k, l) = \angle B_x(k, l) \) are the true and estimated biphase values respectively and \(n(k, l) \) is a matrix of integers.

To find the matrix of \(n(k, l) \), we use a similar technique to that of [27], firstly, using the estimated phase of the system \(\phi_x = \angle H(k) \) a shadow biphase \((\Psi_x) \) of the bispectrum is computed as:

\[
\Psi_x = A_\phi \phi_x
\]
(9)

where \(A_\phi \) is the biphase coefficient matrix; a set of equations describing the relationship between the system phase and the resulting biphase [27]. Once the shadow biphase is found, the estimated biphase \((\phi_x = \angle H(k)) \) may be subtracted from it in order to recover the matrix of integers \(n(k, l) \) as shown in (10) below. The result may not always be exactly on integer value and hence the elements of \(n(k, l) \) are rounded to the nearest integer value.

\[
n(k, l) = \frac{\Psi_x - \Psi_T}{2\pi}
\]
(10)

Once we have the elements of \(n(k, l) \), we can easily estimate the true biphase value from (8). A least squares method is then applied to estimate the true system phase:

\[
\phi_t = (A_\phi^T A_\phi)^{-1} A_\phi^T [\Psi_x + 2\pi n(k, l)]
\]
(11)

where \(A_\phi^T \) denotes the transpose of \(A_\phi \) and \((\bullet)^{-1}\) denotes the matrix inverse. Now the better estimated system information can be computed by using the system’s Fourier magnitude and system’s Fourier phase term as:

\[
H(k) = [H(k)] \exp(j\phi_t)
\]
(12)

where \([H(k)]\) is the absolute value of (7). A plot of typical system magnitude and phase as recovered by this approach from one second of EMG signal is shown in Figure 1(c). Finally the inverse Fourier transform of (12) gives the time domain system information, as depicted in Figure 1(d).

III. EMG Signal Acquisition and Processing

The EMG signals were recorded from four subjects. For each subject, two sets (using wired and surface electrodes) of EMG signals were recorded in the gait laboratory of Roessingh Research and Development, Enschede, Holland, upon ethical approval from the medical ethics committee of the Het Roessingh Hospital. Each set of signals contains two subsets of EMG signals classified on the basis of type of muscle tested - Rectus Femoris (RF) and Vastus Lateralis (VL) muscle. Each subset contains 42 EMG signals recorded at seven different contraction positions under three different loading conditions at the ankle of the subject.

A. Subjects

Four healthy male volunteers were recruited as subjects with ages ranging from 23 to 33 years old (26.2 ± 4). For each subject, the wired and surface EMG measurements were taken at the same time on each muscle. Three kinds of weight loading were tested for each subject: either no weight or by attaching 1.13 kg and 2.26 kg weights at the ankle.
B. Placement of Fine Wire and Surface Electrodes to the Muscle

The technique of EMG signal recording followed the guidelines of [29]. For RF, a line was measured between the anterior superior iliac spine and the superior border of the patella, and the fine wire electrode was inserted at 50% of the distance between both anatomical landmarks. For VL, a line was measured between the anterior superior iliac spine and the lateral border of the patella and the same type of fine wire electrode was used for EMG signal recording. The fine wire electrode used was manufactured by The California Fine Company, USA and was made of stainless steel with a diameter of 50µm, 2mm recording surface and the rest of the wire was nylon insulated.

For both RF and VL, surface electrodes were placed either side of the fine wire electrode parallel to the direction of the muscle fibers of the muscle [10]. The surface electrode was made of Ag/AgCl and square shaped with a 10mm by 10mm recording area, and a 22mm inter-electrode distance manufactured by Meditrace Pellet 180, The Netherlands.

C. Different Positions for Contraction

1) Resting Protocol: All subjects began in a seated position with a knee angle of 90° (the dashed line in Figure 2) This position is referred to here as the rest state; i.e. ‘no knee extension’ or ‘no hip flexion’. Two resting EMG measurements (also known as the baseline measurement) were recorded at this point with the subject in a relaxed state.

2) Vastii Protocol: Each subject had to extend the knee to angles of 30°, 60° and 90° from the rest state (Figure 2(a)) whilst wEMG and sEMG signals were simultaneously recorded from both muscles. Subsequently 1.13 kg and 2.26 kg weights were attached at the ankle and the contraction protocol was repeated using the aforementioned angles. EMGs were recorded for a 5-10 second period for each contraction. Two EMG recordings were taken for each angle at all weights.

3) Rectus Femoris Protocol: Subjects flexed the hip from the rest state to two angles, a low angle approximately 15° and a high angle approximately 30° (Figure 2(b)). This process was repeated with a 1.13 kg weight followed by a 2.26 kg weight placed around the ankle. Again, two EMG recordings were taken for each angle at all weights.

4) Combination Protocol: In this case, subjects began with the leg in the resting position, after which they extended the leg to 90° knee extension and concluded with combined knee extension and hip flexion to a hip flexion angle of approximately 15° (Figure 2(c)). The combination contractions were performed for each of the contraction weights i.e. 0 kg (no weight), 1.13 kg and 2.26 kg. Two EMG recordings were taken at all weights.

The order in which all muscle contractions were performed was randomized to prevent fatigue or bias in the results. Each contraction protocol was designed to elicit an EMG response from different muscles. Knee extension contractions were designed to activate the Vastii only, whilst the hip flexion contractions have been shown to activate RF only [29]. The combined contraction was designed to show the effect of the two different contractions on activation in the RF muscle as
shown by the wEMG and sEMG. As the knee extension phase of the combined contraction was designed to activate the Vastii only, one explanation of activity in the RF muscle sEMG, which is absent from the RF wEMG signal, would be possible crosstalk from the Vastii muscles [10].

D. Acquisition of EMG Signal

On each contraction protocol, four detectors - two electrodes for the wEMG signal and two electrodes for the sEMG signal - were set up and the corresponding EMG signals were recorded simultaneously. The recording of EMG signals was performed using four channels of the ‘K-lab’ EMG measurement system (manufactured by Biometrics Europe BV, The Netherlands). 2048 sample points were taken at a sampling rate of 2 kHz. The measurement system had an input impedance of 100MΩ and common mode rejection ratio of 100dB. A 3rd order Butterworth high pass filter (hardware filter) with cut-off frequency of 20Hz was used on all EMG channels to increase SNR. A 12-bit A/D converter produced an output in digital format.

E. Technique of MUAP Estimation

The acquired EMG signals have been plotted using MATLAB software. From the plotted EMG signals (as an example, Figure 3 illustrates the RF wEMG and sEMG signal of subject CAB), it is clear that the appearance and amplitude of different raw EMG signals varies with the type of contraction and level of contraction. For example, the RF muscle stays in the rest state on knee extension, as its EMG signal is similar to its EMG signal in the rest state (compare the plots labelled Rest and knee extension at 60° (KE60d) of Figure 3). In the combined contraction (COM), it is found that the wEMG signal for the RF muscle shows two different stages: rest and contraction, whereas the sEMG signal for the RF muscle shows three distinct stages: rest, a low level of contraction and contraction. Recall that both the wEMG and sEMG signals were recorded simultaneously and the combined contraction

Fig. 3. wEMG and sEMG signal recorded from Rectus Femoris of subject CAB at four different contraction positions - rest, hip flexion to 30° (HF30d), knee extension to 60° (KE60d) and combined (COM).
protocol consists of three parts: rest, knee extension and hip flexion plus knee extension (see Figure 2(c)).

In order to recover the overall shape of a MUAP, each raw EMG signal has been segmented into segments of one second duration where each segment contains 2048 data points. Figure 4 shows plots of one second segments of EMG signals from the two different contracting muscles of subject CAB. From these plots, it is observed that the MUAP in the wEMG signal is sometimes distinguishable at a low contraction level, but it is hard to see the exact shape of the MUAP and determine the number of motor units involved. On the other hand, it becomes much more difficult to find individual MUAPs when we consider the sEMG signal of the same contracting muscle. It is also observed that the sEMG signal contains more noise than the wEMG signal.

As the raw EMG signal always contains some noise, it can be difficult to recover directly a good estimate of the MUAP shape from a raw EMG signal. By applying the cepstrum of bispectrum based system reconstruction algorithm to the EMG signal, an estimate of the MUAPs in the signal can be recovered. Bispectrum based techniques require more data to produce an estimate because of the requirement for averaging to reduce the variance of the bispectrum [22]. Therefore, the estimation of a MUAP is made from a one second segment of raw EMG (wEMG or sEMG) signal. The individual MUAPs within each second of raw data will each contribute information towards the estimate of the MUAP shape. A set of MUAP estimates may thus be made for each second, from first to last, of the raw signal. Due to the inherent limitations of blind deconvolution, normalized estimates of the MUAPs are computed by considering all estimated MUAPs from a given signal.

To illustrate the presentation of estimated MUAPs in any figure, we present Figure 5 as an example where the raw signal is in the top subplot, the estimated MUAPs without normalization in the middle subplot and the estimated MUAPs normalized with respect to the whole recording in the bottom subplot of the figure. The top subplot contains three seconds of a raw EMG signal (i.e. 3X2048 data points). The middle subplot shows three MUAPs where each MUAP has been estimated from one second of the raw signal: i.e. the first MUAP has been estimated from the raw EMG signal of the first second; the second MUAP has been estimated from the raw EMG signal of the second second and so on. The last subplot is the normalized form of the middle subplot. On the x-axis of each subplot is displayed the time points of the raw signal from which the MUAPs have been estimated and the y-axis displays the amplitude of the raw signal (top subplot) and of the estimated MUAPs (middle and bottom subplots). Note that the time-scale in the middle and bottom subplots is for delineating the contribution of each second of the raw EMG signal and the presence of an estimated MUAP at a particular time on the time scale does not indicate that the raw EMG signal necessarily contains a MUAP at that exact time instant.

IV. RESULTS

Following the procedure described above, MUAPs have been estimated from the simultaneously recorded wEMG and sEMG signal of the RF and VL muscles of the four subjects. Here we present the results of estimated MUAPs for one subject (CAB) only. Figures 6 and 7 display the estimated MUAPs for six contraction positions: rest, hip flexion 15° (HF15), hip flexion 30° (HF30), knee extension 30° (KE30), knee extension 60° (KE60) and knee extension 90° (KE90). The behavior of MUAPs in the different contraction positions has been summarized in Table I. To observe the behavior of MUAPs during the combined contraction we estimated the MUAP from the three separate stages of the EMG and plotted the results in Figure 8. We also estimated the MUAPs from the EMG signal when the subjects have different loads at the ankle. Figure 9 displays one example of the MUAPs’ behavior which were estimated from the wEMG and sEMG signals of the RF muscles of subject CAB with different weights at the ankle.

In MUAP observation and analysis, the shape of the MUAP has been described by the presence and the duration of three phases - rest phase, overshoot phase (depolarizing phase) and undershoot phase (repolarizing phase). The behavior of the MUAP at different contraction positions is noted below.

A. MUAP in the EMG Signal with Subject at Rest

The MUAP of rest muscle can be seen in the first sequence in both subplots of Figures 6 and 7. From these MUAPs the following points can be noted:

1) The shape of the MUAP in resting muscle EMG signal is impulse-like and the peak may appear randomly to both sides (positive and negative) of zero level.

2) The shape and appearance of the estimated MUAPs are similar in both the wEMG and sEMG signal.

These characteristics are summarized in Table I.

B. MUAP in the EMG signal with subject holding hip flexion

The MUAPs at this contraction position (see Figure 2(b): hip flexion to 15° and 30°) are displayed in the second and third sequences in each of the subplots of Figures 6 and 7. The behavior of estimated MUAPs can be described as follows and is summarized in Table I.

1) The MUAPs in the RF wEMG signal confirm that the RF muscle is contracting because: (a) the MUAPs have three phases (rest, overshoot and undershot phase) and (b) the peaks of all MUAPs appear to only one side of the base line (zero level).

2) The MUAPs in the RF sEMG signal also show that the muscle is contracting as it behaves similarly to the above.

3) The MUAPs in the VL wEMG signal confirms that the muscle stays at rest in hip flexion as the MUAPs show similar behavior to the resting muscle MUAP (see resting muscle behavior in Table I or the first sequence in Figures 6 and 7).

4) The MUAPs in the VL sEMG signal do not always show the resting state shape. At a low angle of hip flexion the MUAP is similar to the rest state MUAP but at a high angle of hip flexion the peak amplitude of the MUAPs appear mostly to one side of zero level.
The appearance of the MUAP in the VL sEMG signal at a high angle of hip flexion could be a superimposing effect from other muscles (crosstalk) or could indicate contraction (low level contraction). Furthermore, the appearance of MUAPs in the VL sEMG signal are similar to the appearance of MUAPs in the RF sEMG signal (see Table 1 or compare the sEMG subplots in Figures 6 and 7). Therefore, for this case, this appearance indicates the possibility of the presence of a crosstalk signal in the VL muscle due to RF muscle contraction.

C. MUAP in the EMG signal with subject holding knee extension

The fourth, fifth and sixth sequences in each subplot of Figures 6 and 7 display the average appearance of MUAPs at this contraction position (Figure 2(a)- knee extended at 30°, 60° and 90°). The behavior of the estimated MUAPs are described below and also summarized in Table 1.

1) As expected, the behavior of the MUAPs in the wEMG and sEMG signals from the VL muscle show the appearance of a contracting muscle’s MUAP, having three phases and with the MUAP peak appearing mostly to one side of zero level.

2) The MUAPs in the RF sEMG signal would suggest that the muscle is not at rest. Thus, there is evidence of a crosstalk signal due to VL muscle contraction as the appearance of the MUAPs in the RF sEMG signal and the VL sEMG at this contraction position are similar.

3) The MUAPs in the RF wEMG signal appear similar to the baseline Rest state, but as the angle of knee extension increases more of the behavior of non-resting muscle MUAPs becomes apparent: the peak of the MUAPs appear to one side of zero level. However, there is not a strong appearance of three phases of MUAP. This appearance may indicate one of two things: (i) the influence of another contracting muscle i.e. a crosstalk signal due to a neighboring muscle but not from the VL muscle because it is not similar to the appearance of the MUAP as it is estimated from the VL muscle; (ii) the RF muscle actually is contracting at this time (at a low
Fig. 5. MUAP estimation technique. Raw wEMG signal (top), corresponding estimated MUAP (middle) and normalized form of estimated MUAPs (bottom). The x-axes of all subplots are the time scale of the original recording (in seconds). The y-axis shows the amplitude of raw data (top), estimated MUAP (middle) and normalized MUAP (bottom).

D. MUAP in the EMG signal when subject executes a combination contraction

Figure 8 displays the average appearance of MUAPs during the combined contraction protocol (Figure 2(c)). Recall that the EMG signal recorded from a combination contraction has three stages: (i) rest state (the 1st to the 11th second in this case), (ii) knee extension (from 12th to the 22nd second), and (iii) knee extension plus hip flexion (from the 23rd to the 36th second in this case). Thus, in the figure, the first eleven seconds along the time axis show the MUAPs extracted from the rest state, the 12th to the 22nd second time points show the MUAPs extracted from the knee extension stage and the 23rd to the 36th second time points show the MUAPs extracted from the knee extension plus hip flexion stage. Thus, in the figure, the first eleven seconds along the time axis show the MUAPs extracted from the rest state, the 12th to the 22nd second time points show the MUAPs extracted from the knee extension stage and the 23rd to the 36th second time points show the MUAPs extracted from the knee extension plus hip flexion stage. Comparing this sequence with Figures 6 and 7 (also with Table 1), the first two stages (the rest state and the knee extension) are distinguishable. The appearance of MUAPs in the third part of these sequences when the knee was extended and the hip was flexed has the following features:

1) In the wEMG signals for each muscle, the dominant appearance is of course of the MUAP associated with the contraction which the muscle is performing. Thus, in the RF wEMG signal during the combined contraction, the MUAP appearance is similar to the appearance of MUAPs in the RF wEMG signal during hip flexion. Similarly, in the VL wEMG signal, the MUAPs appear similar to the appearance of MUAPs in the VL wEMG signal during knee extension.

2) During this third part of the combined contraction, there is not much evidence of crosstalk from the RF muscle in the sEMG signal taken from the VL muscle. The MUAPs in the sEMG signal from the VL muscle show a similar appearance to the MUAPs of knee extension alone (e.g. as seen in Figures 6 and 7). On the other hand, in the RF muscle the MUAPs appear to be a
Fig. 6. Appearance of MUAP in wEMG (top) and sEMG (bottom) signals of Rectus Femoris muscle (subject - CAB). Both subplots show the estimated MUAPs at five contraction positions: Rest, Hip flexion 15° (HF15), Hip flexion 30° (HF30), knee extension 30° (KE30), knee extension 60° (KE60), knee extension 90° (KE90).
Fig. 7. Appearance of MUAP in wEMG (top) and sEMG (bottom) signals of Vastus Lateralis muscle (subject - CAB). Both subplots show the estimated MUAPs at five contraction positions: Rest, Hip flexion 15° (HF15), Hip flexion 30° (HF30), knee extension 30° (KE30), knee extension 60° (KE60), knee extension 90° (KE90).
sum of MUAPs characteristic of hip flexion and knee extension (i.e. with low amplitude of MUAP with clear overshoot and undershot in MUAP). Thus there is evidence of crosstalk in the RF sEMG signal due to the contracting VL muscle.

E. Comparison of Estimated MUAP - Subject With and Without Load

In this case, the MUAPs were estimated from the EMG signal acquired when the subjects were seated in six different contraction positions as before and at the same time a load (1.13 kg or 2.26 kg) was attached to the ankle. Figure 9 displays the MUAP estimated from the wEMG and sEMG signals respectively of the RF muscle of CAB. Each subplot shows the MUAPs for three contraction positions with three different loads (‘no load (0 kg)’, ‘1.13 kg load (1 kg)’ or ‘2.26 kg load (2 kg)’) at the subject’s ankle (where the term in brackets denotes the abbreviation used in the figure). The contraction positions are: rest, hip flexion to 15° and knee extension to 60°. Recall that the estimated MUAPs are presented here in normalized form and the normalization is made with respect to the whole recording.

From all the subplots, it is clear that the shape of MUAPs remains broadly similar if the subject increases effort: either to increase the angle at which the knee or hip is held or because of increased loading at the ankle. Due to the normalization inherent in the signal processing, it is not possible to compare the amplitudes of the recovered MUAPs. The unchanging shape of the MUAPs suggests that the effect of increased effort due to, for example loading at the ankle, may have another impact in the EMG signal, such as increasing the frequency of neuron firing pulses and thus the recruitment of motor units.

V. DISCUSSION AND CONCLUSION

The mathematical model adopted in this paper of the EMG signal is of the output of a LTI system whose input is non-Gaussian white noise. Based on this model, we have used our cepstrum of bispectrum based system reconstruction
Fig. 9. MUAPs estimated from (a) wEMG and (b) sEMG signal of the RF muscle when subject CAB has either no load (0 kg), 1.13 kg (1 kg) and 2.26 kg (2 kg) attached at the ankle and contraction positions are hip flexion to 15° (HF15) and knee extension to 60° (KE60).
algorithm to estimate MUAPs from a range of real EMG signals obtained during isometric contraction. Our results show that the cepstrum of bispectrum approach can recover good estimates of MUAPs from both wEMG and sEMG signals.

Following on the successful work of [15], [16], there now exist many EMG decomposition programs [30] but these are mainly successful only for wEMG signals and many such programs require the intervention of a human operator [30]. An early use of higher order statistics based approaches to recovery of MUAPs from the sEMG signal was by Yana et al. [19]. However, their approach was only applied to simulated sEMG signals. Other workers have tried a variety of approaches to the decomposition and recovery of MUAPs from the EMG with only varying success. For example, the approach of [17] is simply a first step to locating the MUAPs in each MUAP has three phases. As contraction strength increases, in other words it reflects motor unit recruitment. In the experiments described, the detector positions were fixed for all contractions and wEMG and sEMG were recorded simultaneously. Our results clearly show, from the different appearance of the MUAPs in the wEMG and sEMG from the same muscle, the effect of motor unit recruitment.

Our results indicate that the resting muscle’s wEMG or sEMG contains a train of impulse-like MUAPs whose peaks are oriented to both sides of zero level. In fact, there is no involvement of motor unit in the resting muscle and the observed impulse-like MUAP estimated from the resting muscle’s EMG signal, is the effect of noise and can be considered as a baseline signal which is a ’signature’ of a muscle’s EMG signal, is the effect of motor unit recruitment. In the experiments described, the detector positions were fixed for all contractions and wEMG and sEMG were recorded simultaneously. Our results clearly show, from the different appearance of the MUAPs in the wEMG and sEMG from the same muscle, the effect of motor unit recruitment.

A contracting muscle as expected produces MUAPs where each MUAP has three phases. As contraction strength increases, the shape of the MUAP may change due to increased motor unit recruitment as noted above. Similarly, the duration of the undershot and overshoot phases in MUAPs in the sEMG signal are longer than in those of the wEMG signal. This longer duration indicates the involvement of more MUAPs being detected due to the nature of surface detection in the sEMG signal.

<table>
<thead>
<tr>
<th>Contraction Position and Signal Type</th>
<th>MUAP Shape (contained MUAP phase†)</th>
<th>Orientation of MUAP Peak (in a single recording)</th>
<th>Evidence of Crosstalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rest</td>
<td>All phases (R + O + U)</td>
<td>one side of zero</td>
<td>no</td>
</tr>
<tr>
<td>Hip Flexion 15°</td>
<td>All phases (R + O + U)</td>
<td>one side of zero</td>
<td>no</td>
</tr>
<tr>
<td>RF wEMG</td>
<td>Spike-like</td>
<td>Both sides of zero</td>
<td>–</td>
</tr>
<tr>
<td>RF dEMG</td>
<td>All phases (R + O + U)</td>
<td>Mostly 1 side of zero</td>
<td>Some</td>
</tr>
<tr>
<td>VL wEMG</td>
<td>Spike-like</td>
<td>Both sides of zero</td>
<td>No</td>
</tr>
<tr>
<td>VL dEMG</td>
<td>All phases (R + O + U)</td>
<td>Mostly 1 side of zero</td>
<td>No</td>
</tr>
<tr>
<td>Knee Extension 30°</td>
<td>Spike-like †</td>
<td>Both sides of zero</td>
<td>No</td>
</tr>
<tr>
<td>RF wEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>RF dEMG</td>
<td>Spike-like †</td>
<td>One side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>VL wEMG</td>
<td>All phases (R + O + U)</td>
<td>Mostly 1 side of zero</td>
<td>No</td>
</tr>
<tr>
<td>VL dEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>No</td>
</tr>
<tr>
<td>Knee Extension 60°</td>
<td>Spike-like †</td>
<td>Mostly 1 side of zero</td>
<td>Some</td>
</tr>
<tr>
<td>RF wEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>RF dEMG</td>
<td>Spike-like †</td>
<td>One side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>VL wEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>No</td>
</tr>
<tr>
<td>VL dEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>No</td>
</tr>
<tr>
<td>Knee Extension 90°</td>
<td>Spike-like †</td>
<td>Mostly 1 side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>RF wEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>RF dEMG</td>
<td>Spike-like †</td>
<td>One side of zero</td>
<td>Yes</td>
</tr>
<tr>
<td>VL wEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>No</td>
</tr>
<tr>
<td>VL dEMG</td>
<td>All phases (R + O + U)</td>
<td>One side of zero</td>
<td>No</td>
</tr>
</tbody>
</table>

† MUAP shape has been expressed in three phases: Rest phase = R, Overshot phase = O and Undershot phase = U
‡ Spike-like means the presence of two phases: rest + undershot or rest + overshoot
It was also observed that the shape of the estimated MUAPs remains the same when EMG signals are recorded with increasing loads at a subject’s ankle. Due to the normalization inherent in the signal processing, it is not possible to compare the amplitudes of the recovered MUAPs. The increasing effort by the muscle cannot be directly detected by our technique without additional processing. For example, with further processing by inverse filtering, our approach can be used to recover the firing instants [33] which can then be used to explore the effects of increased loading.

Our approach is also able to detect crosstalk in one muscle due to activity in another muscle. It can do this not just because it is possible to detect activity in the sEMG when there is no activity in the wEMG [11], but also because it is possible to compare the appearance of MUAPs in the two muscles. For example, the appearance of MUAPs in the VL sEMG signal during hip flexion are similar to the appearance of MUAPs in the RF sEMG signal (the muscle which is actually producing the hip flexion) so we can conjecture that there is a crosstalk signal appearing. The orientation of the MUAPs may also change in the case of crosstalk, for example as occurs in the RF sEMG signals during knee extension, under the influence of crosstalk from the VL muscle.

In conclusion, we believe that our signal processing approach to MUAP recovery from wEMG and sEMG is useful because it provides a quick (real time), cheap software-based solution to visualising MUAPs. With further processing our procedure can also be used to recover firing instants and firing rates.

REFERENCES

Shahjahan Shahid was born in Bogra, Bangladesh. He received the B.Sc. and M.Sc. degree in Applied Physics and Electronics from the University of Rajshahi, Bangladesh, in 1988 and 1990 respectively; and the Ph.D degree in Electronics and Computer Engineering from the University of Limerick, Ireland in 2004. During 1991 to 1997, he was with the Bangladesh Atomic Energy Commission as a Scientific Officer. He is currently with gtec Guger Technologies, Graz, Austria working on Bio-signal Processing. His main area of higher order statistical signal processing estimation theory, bio-signal analysis and medical instrumentation.

Jacqueline Walker was born in London, England. She received the B.A. and the B.E. (First Class Honours) degrees, both from the University of Western Australia, in 1987 and 1992 respectively and the PhD degree from Curtin University of Technology in 1997. During 1996-7, she was employed as a Research Engineer by the Australian Telecommunications Research Institute. In November 1997, she joined the Department of Electronic and Computer Engineering at the University of Limerick, Ireland as a Lecturer. Her research interests include signal processing applied to biomedical, speech and music signals with particular interest in blind deconvolution and blind source separation. Dr Walker is a Member of the IEEE and of the IEE.

Gerard M Lyons graduated from University College, Cork, Ireland with a B.E. in Electrical Engineering (First Class Honours) in 1980, and an M.Eng.Sc. Microelectronics in 1982 and graduated from the National University of Ireland, Galway with a Ph.D. in Biomedical Engineering in 2000. From 1985 to 1990 Dr. Lyons worked in the semiconductor industry in the Santa Clara Valley and Monterey Peninsula in California, USA. He returned to Ireland in 1990 and joined the University of Limerick as a member of faculty and is currently a Senior Lecturer in Electronic and Computer Engineering, Assistant Dean, Research, College of Informatics and Electronics and Director of the Biomedical Electronics Laboratory at the university. Dr. Lyons’ primary research interests are gait rehabilitation using FES, mobility assessment of the elderly and use of computer-based biofeedback techniques for rehabilitation applications.

Anand Vishwanath Nane was born in Bombay, India. He received M.B.B.S. and M.S. degrees in 1972 and 1976 respectively, from Bombay University. Soon afterwards he arrived in the United Kingdom. He obtained a further Post-Graduate degree of Master of Orthopaedic Surgery (MChOrth) from the University of Liverpool in 1979. He returned to India in 1983 and worked as an orthopaedic surgeon in Nagpur, India. Circumstances brought him back to the United Kingdom in 1985. From December 1985 to May 1993 he worked as a medical research fellow in the Orthotic Research and Locomotor Assessment Unit (ORLAU) at The Robert Jones and Agnes Hunt Orthopaedic and District Hospital in Oswestry, Shropshire, U.K. There he developed his interest in the subjects of human locomotion, paraplegic locomotion, Functional Electrical Stimulation and cerebral palsy. He was invited to work in the Netherlands. In January 1994 he started work as a Research Fellow in Roessingh Research and Development based at Roessingh Rehabilitation Centre in Enschede, The Netherlands. From July 1994 to June 1997 he retrained as a specialist in Physical and Rehabilitation Medicine. In December 1994 he was awarded PhD by Twente University for his thesis on Paraplegic Locomotion. Presently, he works as a specialist in Physical and Rehabilitation Medicine, and continues to work as a research fellow in Roessingh Research and Development, based at Roessingh Rehabilitation Centre in Enschede, The Netherlands. He has continued his research interests in Functional Electrical Stimulation, Gait Analysis and its applications in clinical decision making, balance control in neurological disorders and its relation to walking ability.

Ciaran A Byrne was born in Drogheda, Ireland in 1977. He received a B.Sc. degree in Sport and Exercise Science from the University of Limerick in 1999. In 2002, he received an M.Sc. degree from the same institution. He is currently employed as a research scientist for BioMedical Research Ltd., an Irish company that develops muscle stimulation products for the sports, health and medical markets. His research interests include muscle stimulation, EMG and strength and conditioning. He is a Certified Strength and Conditioning Specialist and is a member of the ESSAI.